

IMPROVE LIFE.

WHAT IS ENGINEERING?

- Addresses societal need to solve problems previously simple, now complex
- Employs a systematic approach
- Safety is a factor
- Solution is optimized

A LITTLE BIT OF HISTORY...

THE AUTOMOTIVE EVOLUTION

1900 - Mostly mechanical machines

1950 - Electro-mechanical machines

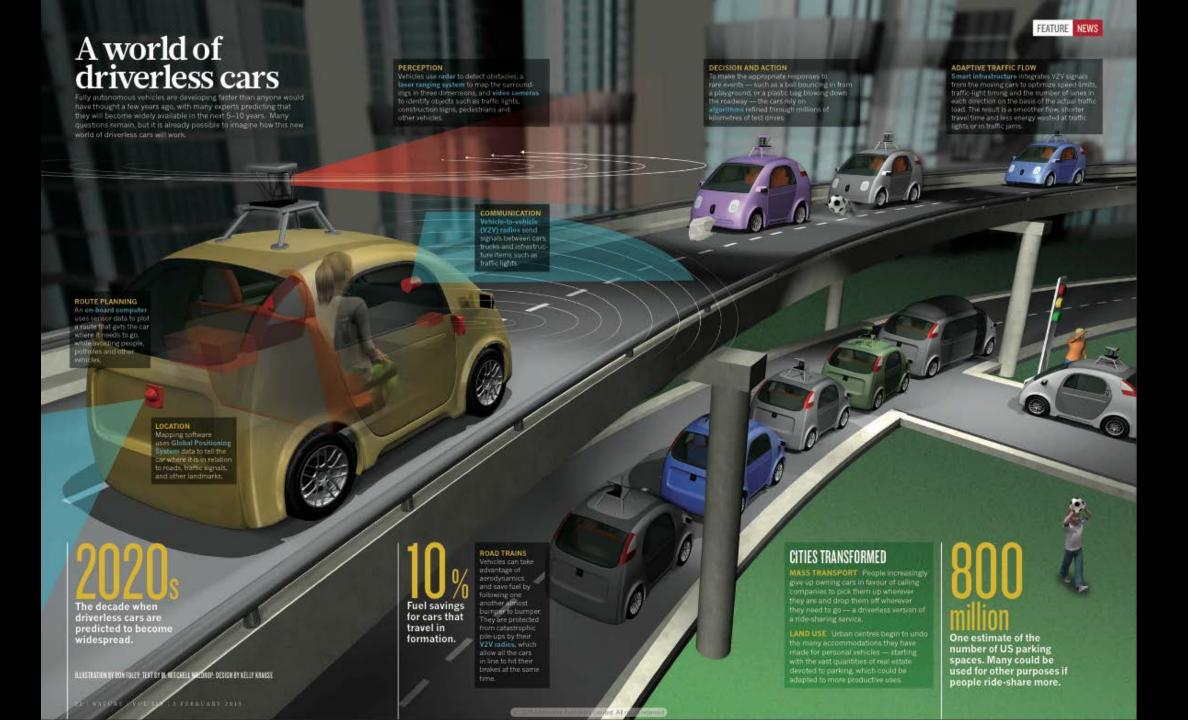
1970 - 4% electronics components

1980s - Autonomous vehicles introduced

2003 - 20% electronics components

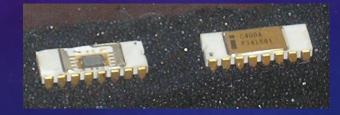
2010 - 30% electronics components

2020 - 35% electronics components (forecast)

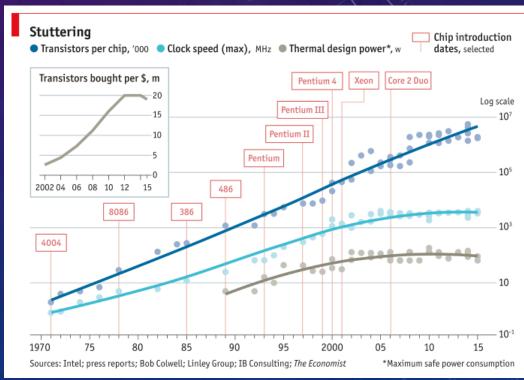

2030 - 35% electronics components (forecast)

ENGINEERING SYSTEMS & COMPUTING

- Only program in Canada that focuses on developing computer-based engineering systems
- A unique mix of software development, hardware design, signal processing, control and modelling within a systems thinking perspective.


COMPUTER ENGINEERING —BUILDING COMPUTING MACHINES

1945 ENIAC Electronic Numerical Integrator And Computer



Glen Beck (background) and <u>Betty Snyder</u> (foreground) program ENIAC in <u>BRL</u> building 328. (U.S. Army photo)

C4004-1971

Wikipedia, the free encyclopedia

via The Economist

COMPUTER ENGINEERING- BEYOND MICROPROCESSORS

- Internet
- Cloud computing
- Smart sensors
- Smart phones
- Tablets
- Wearables
- Internet of Things

https://developer.getpebble.com/

https://nest.com/

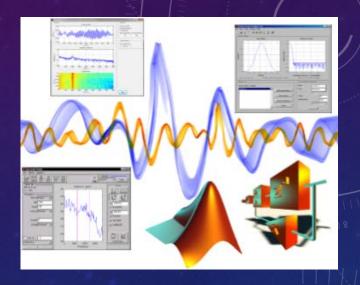
COMPUTER SCIENCE VS. ENGINEERING

Computer Scientist

- Concerned with computational theory
- Develops techniques and tools
- Proves theorems about algorithms, designs languages, defines knowledge representation schemes

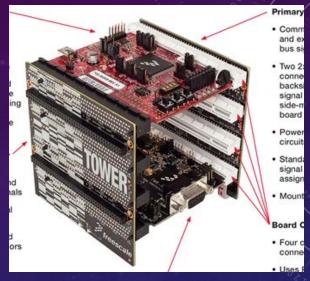
Engineer

- Takes the theory and applies it to real life
- Develops a solution for a problem formulated by a client
- Uses computer & languages, techniques and tools

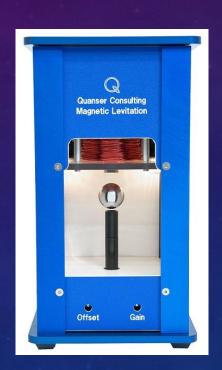

WHY CHOOSE GUELPH?

- Flexibility
 - "I changed my mind... I'd rather be in Biological, but I'm already in second year!"
 - With a common core, it's easy to switch disciplines
 - Co-op options
 - Design courses
- Multidisciplinary faculty and student groups
 - Environmental engineering students working with computer engineering students
- Common core:
 - Unfortunately, this sometimes means large classes but:
 - Lots of small specialty classes: 36% have < 40 students (22% with < 20 students)

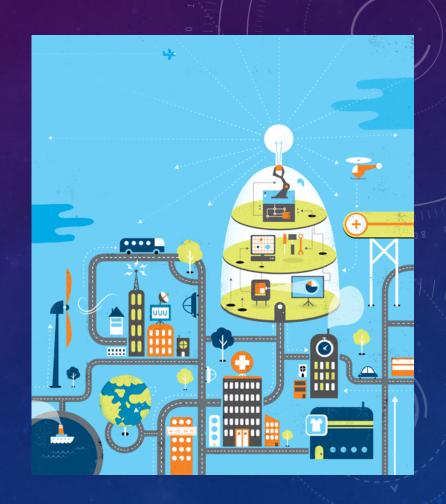
- ENGG*3380 Computer Organization and Design
 - This course contains a detailed examination of modern computer organization and techniques for microprocessor architecture design.
 - Design focus
 - Hands-on labs
 - Small classes



- ENGG*3390 Signal Processing
- This course will establish the fundamental analysis and design techniques for signal processing systems.
 - Hands-on labs
 - Medium size classes
 - Fundamentals and practical skills at the end of third year



- ENGG*3640 Microcomputer Interfacing
- This course focuses on the subject of interfacing microcomputers to external equipment.
 - Design focus
 - Hands-on labs using commercial microcontrollers
 - Small class



- ENGG*4490 Sampled Data Control Design
- This course covers design, analysis synthesis and simulation of process control and automation systems.
 - 4th year, advanced labs
 - Self-guided, open-ended design lab
 - Highly interactive

- ENGG*3130 Modelling Complex Systems
- This course explores the application of systems thinking to complex networks, agent-based models, artificial intelligence & machine learning.
 - Python-based labs
 - Small classes
 - Game-playing activities to reinforce systems thinking
 - Application to real life systems

ENGINEERING @ GUELPH

Multi-disciplinary, flexible, personal

PROGRAM DETAILS

Semester 1

- CHEM*1040: General Chemistry I
- CIS*1300: Programming
- ENGG*1100: Engineering and Design I
- MATH*1200: Calculus I
- PHYS*1130 Physics with Applications

Semester 2

- CIS*2500: Intermediate Programming
- ENGG*1210: Engineering Mechanics I
- ENGG*1500: Engineering Analysis I
- MATH*1210: Calculus II
- PHYS*1010: Intr. Electricity and Magnetism

SECOND YEAR

Semester 3 (Computer)

- CIS*2430: Object Oriented Programming
- CIS*2520: Data Structures
- ENGG*2400: Engineering Systems Analysis
- ENGG*2410: Digital Systems Design using Descriptive Languages
- MATH*2270: Applied Differential Equations
- STAT*2120: Probability & Statistics for Engineers

Semester 3 (ES&C)

- CIS*2430: Object Oriented Programming
- CIS*2520: Data Structures
- ENGG*2230 Fluid Mechanics
- ENGG*2400: Engineering Systems Analysis
- ENGG*2410: Digital Systems Design using Descriptive Languages
- MATH*2270: Applied Differential Equations

SECOND YEAR

Semester 4 (Computer)

- CIS*2910: Discrete Structures in Computing II
- ENGG 2100: Engineering and Design II
- ENGG 2450: Electric Circuits
- ENGG*3380: Computer Organization and Design
- MATH*2130: Numerical Methods
- 1 Elective (CIS 2750 for the software area of interest)

Semester 4 (ES&C)

- ENGG 2100: Engineering and Design II
- ENGG*2120: Material Science
- ENGG 2450: Electric Circuits
- MATH*2130: Numerical Methods
- STAT 2120: Probability and Statistics for Engineers
- 1 Elective (CIS 2750 for the computing area of interest)

THIRD YEAR

Semester 5 (Computer)

- ENGG*2120: Material Science
- ENGG*3390: Signal Processing
- ENGG*3450: Electronic Devices
- ENGG*3640: Microcomputer Interfacing
- HIST*1250: Science & Technology in a Global Context
- 1 Elective

Semester 5 (ES&C)

- ENGG 3260: Thermodynamics
- ENGG 3390: Signal Processing
- ENGG*3450: Electronic Devices
- ENGG*3640: Microcomputer Interfacing
- 2 Electives

THIRD YEAR

Semester 6 (Computer)

- CIS*3110: Operating Systems I
- CIS*3490: The Analysis & Design of Comp Algorithms
- ENGG 3100: Engineering and Design III
- ENGG*3210: Communication Systems
- ENGG*3410: Systems and Control Theory
- 1 Elective

Semester 6 (ES&C)

- ENGG 3100: Engineering and Design III
- ENGG*3130: Modelling Complex Systems
- ENGG*3410: Systems and Control Theory
- ENGG 3430: Heat and Mass Transfer
- HIST*1250: Science & Technology in a Global Context
- 1 Elective

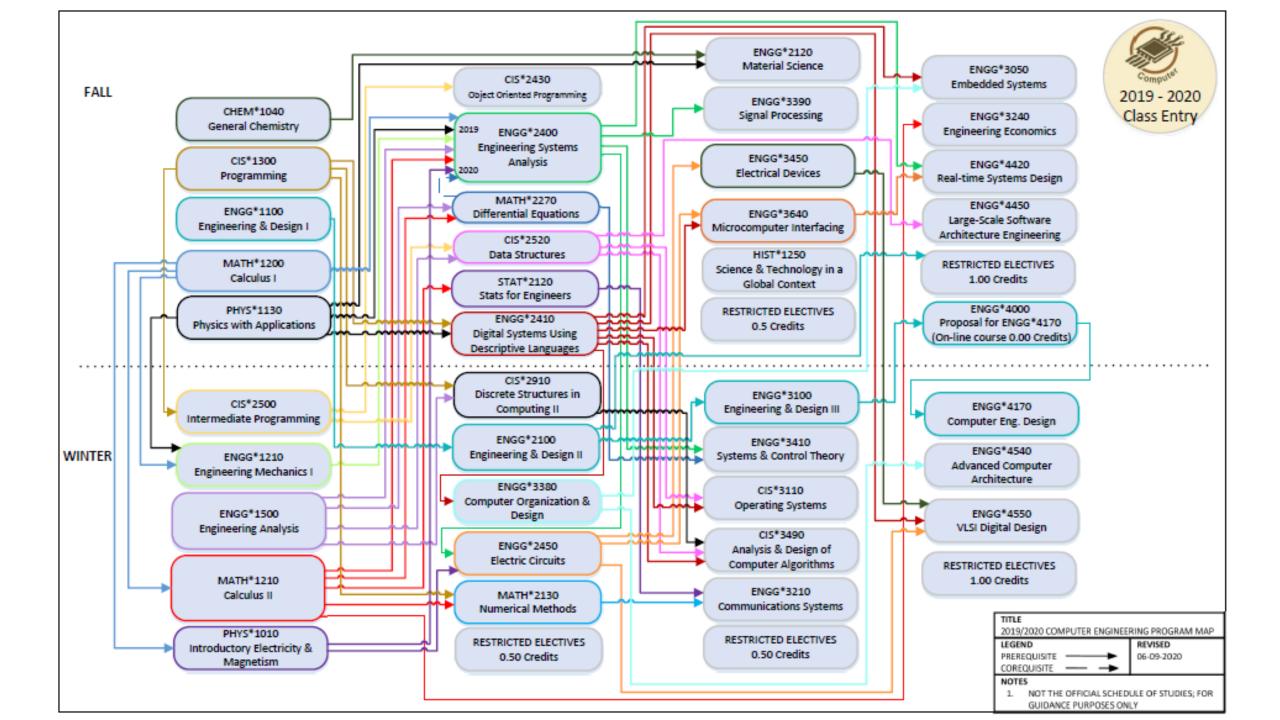
FOURTH YEAR

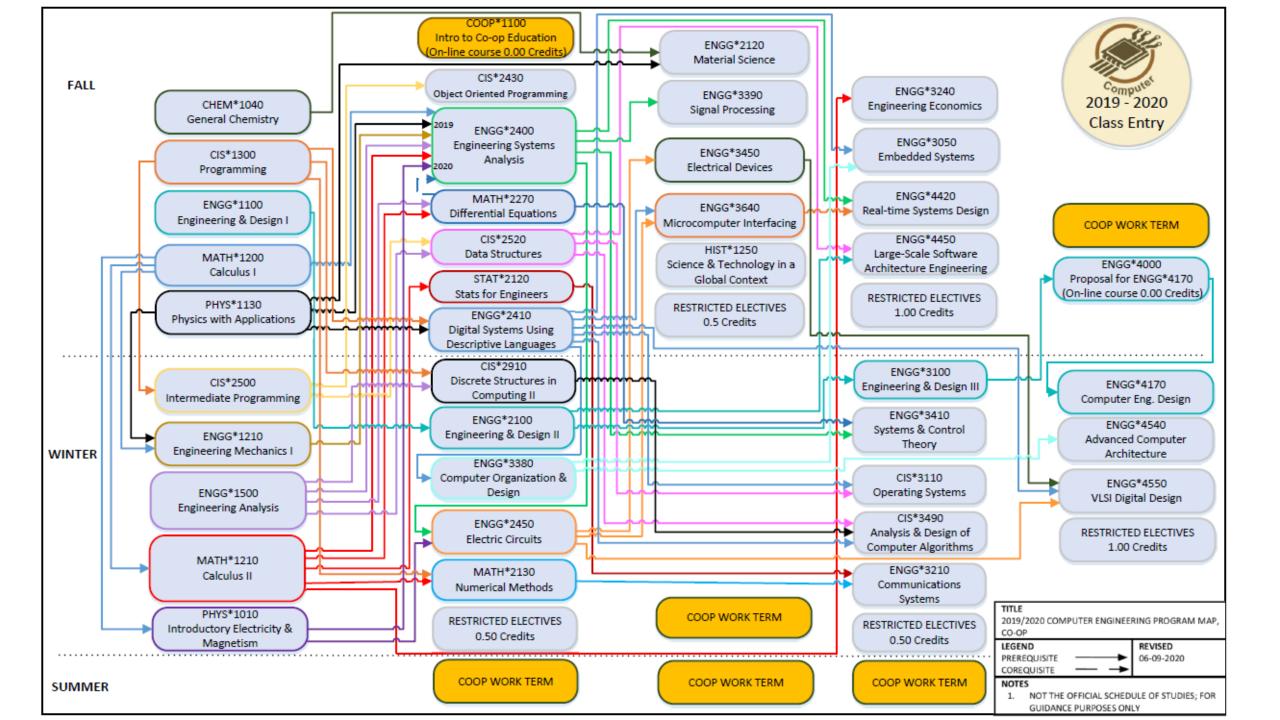
Semester 7 (Computer)

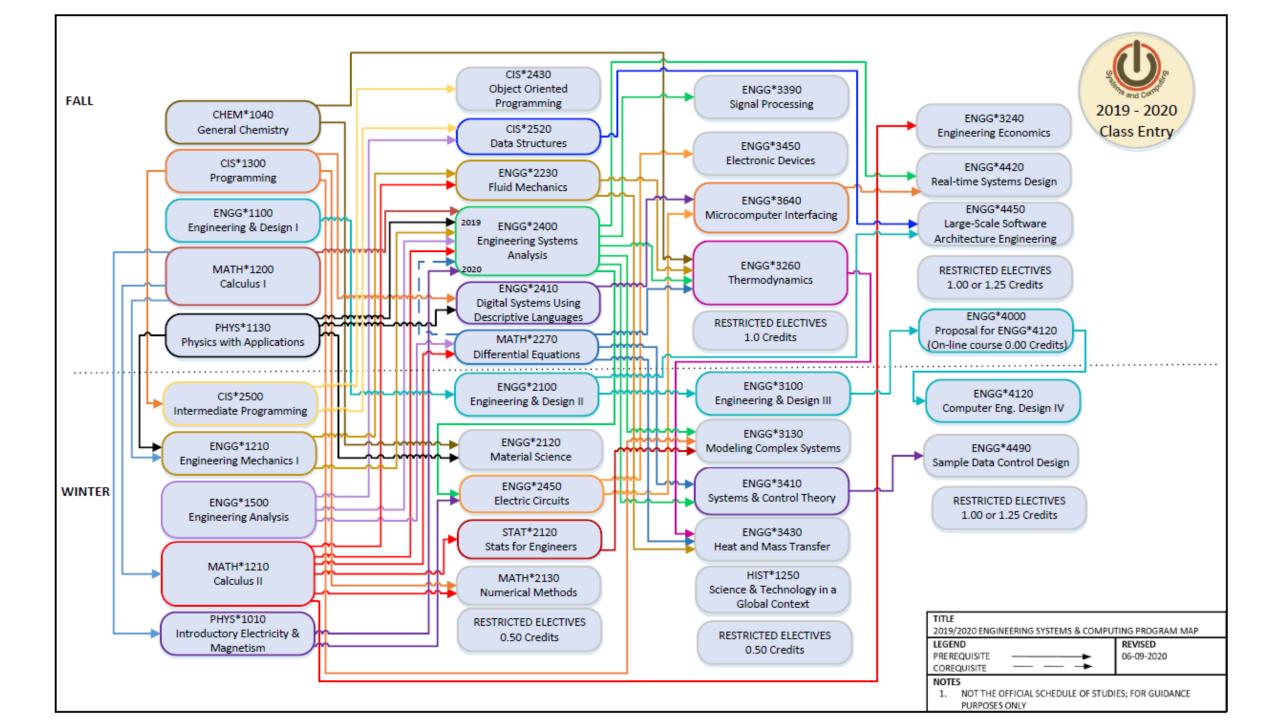
- ENGG*3050 Embedded Reconfigurable Computing Systems
- ENGG*3240: Engineering Economics
- ENGG*4000: Proposal for Engineering Design IV
- ENGG*4420: Real-time Systems Design
- ENGG*4550: Large-scale Software Architecture Engineering
- 2 Electives

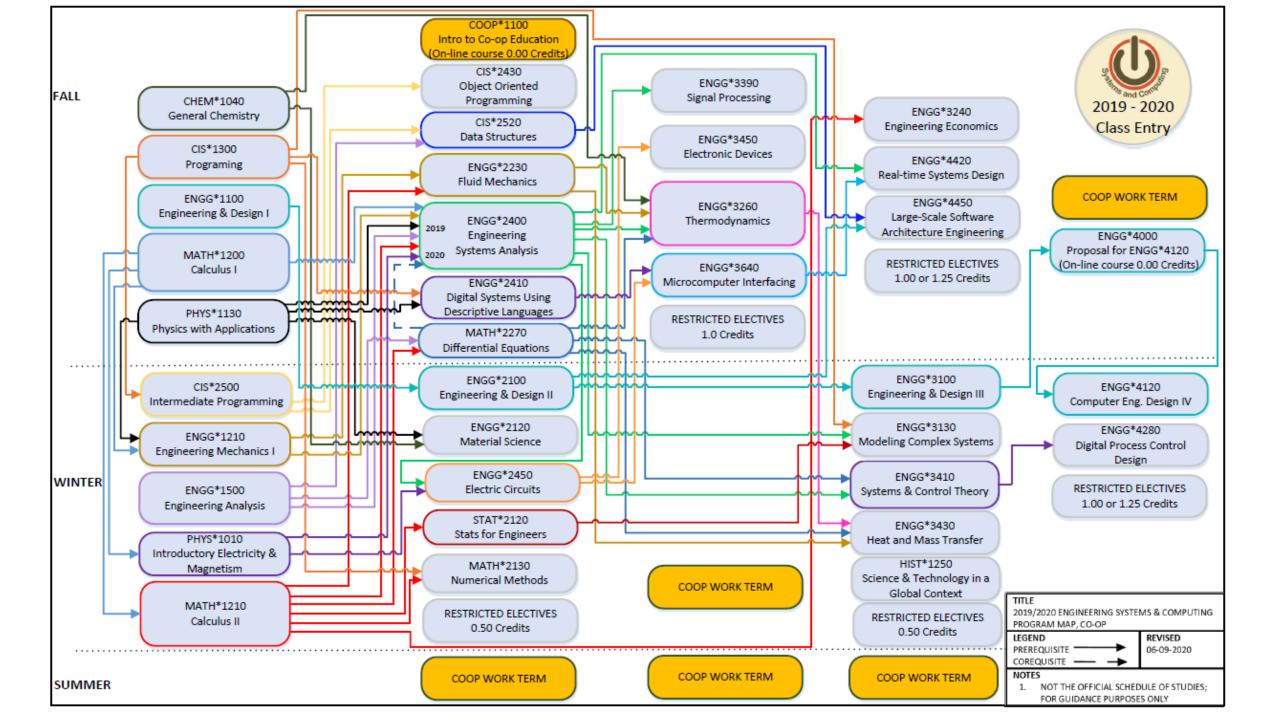
Semester 7 (ES&C)

- ENGG*3240: Engineering Economics
- ENGG*4000: Proposal for Engineering Design IV
- ENGG*4420: Real-time Systems Design
- ENGG*4550: Large-scale Software Architecture Engineering
- 2 Electives (1.0 or 1.25 credits)


FOURTH YEAR


Semester 8 (Computer)


- ENGG*4170: Computer Engineering Design
 IV
- ENGG*4540: Advanced Computer Architecture
- ENGG*4550 VLSI digital design
- 2 Electives


Semester 8 (ES&C)

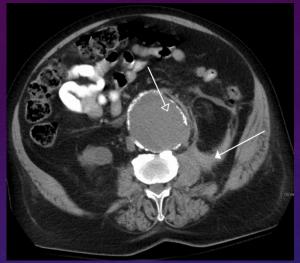
- ENGG*4120: Engineering Systems and Computing Design IV
- ENGG 4490: Sampled Data Control Design
- 2 Electives (1.0 or 1.25 credits)

WHAT CAN I SPECIALIZE IN AT U OF GUELPH ES&C/CE?

STREAMS

Streams are optional and students are free to mix and match between streams or pick any elective courses from ESC-1, ESC-2, CENG-1.

 Students who wish to strengthen their knowledge in a <u>particular specialization</u> are encouraged to take all 2.00 credits from one stream.


ES&C

Embedded Systems

Terasic DE10-nano board

Biomedical

Computing

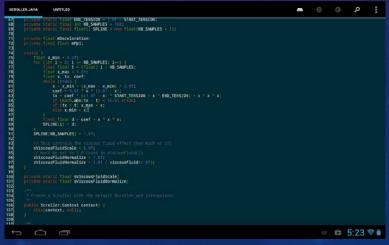
criticalcase.com

Mechatronics

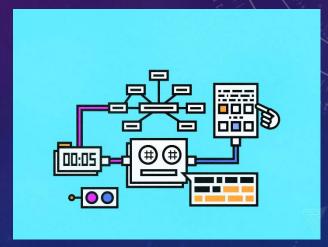
spectrum.ieee.org

CE

Electronic Design Automation


www.t3.com

Microsystems


limemicro.com

Software

play.google.com

Robotics & Al

theverge.com

TEAM

Lei Lei

PhD, Beijing Univ, 2006

Shawki Areibi

PhD, U of Waterloo, 1995, P.Eng

Petros Spachos

PhD, U of Toronto, 2014

Spachos Stefano Gregori

PhD, U of Pavia, 2002, P.Eng

Medhat Moussa

PhD, U of Waterloo 1996, P.Eng

Radu Muresan

PhD, U of Waterloo, 2003, P.Eng.

Kevin Dong

Graham Taylor

Ph.D. U of Toronto 2009, P.Eng

Julie Vale

Ph.D., U of Waterloo 2010, P.Eng

Hadis Karimipour

Ph.D., U of Alberta 2016, P.Eng

Simon Yang

PhD, Alberta 1999, P.Eng

Mohamad Abou El Nasr

Ph.D., U of Waterloo 2017, EIT

Hong Ma

Matthew Saunders

LEI LEI

PhD, U of Glasgow, 1992, P.Eng

Courses

ENGG*4430 (Neural-Fuzzy and Soft Computing Systems)

- Deep Reinforcement Learning
- Internet of Things
- Mobile Edge Computing
- Smart Grid

SHAWKI AREIBI

Courses

- ENGG*2410 (Digital Design)
- ENGG*3050 (Reconfigurable Computing)
- ENGG*6530 (Reconfigurable Systems)

PhD, U of Waterloo, 1995, P.Eng

- VLSI Physical Design Automation
- Computer Architecture
- Reconfigurable Computing Systems
- Embedded Systems
- Machine Learning

STEFANO GREGORI

Doctorate
University of Pavia,
2002

Courses

- ENGG*3450 (Electronic Devices)
- ENGG*4080 (Micro/Nano Scale Elect)
- ENGG*6510 (Analog IC Design)

- Low-voltage low-power mixed-signal ICs
- Low-power integrated sensors
- Ultra-dense Flash memories
- Data converters
- Micro-sensors and Analog Interfaces

MEDHAT MOUSSA

Courses

- ENGG*3380 (Embedded Arch Design)
- ENGG*4460 (Robotic Systems)

PhD, U of Waterloo 1996, P.Eng

- User-adaptive Intelligent Systems
- Reconfigurable Computing Systems
- Machine vision

RADU MURESAN

Courses

- ENGG*4420 (Real Time Systems) (F)
- ENGG*4550 (VLSI Digital Systems) (W)
- ENGG*4560 (Embedded Systems) (W)
- ENGG*3640 (Microcomputer Interfacing) (F)

PhD, U of Waterloo, 2003, P.Eng.

- Low power VLSI design
- Security: cryptographic hardware and cipher design
- Real-time embedded design
- Intelligent transportation systems

PETROS SPACHOS

PhD, Toronto, 2014

Courses

- ENGG*4200 (Wireless Sensor Networks)
- ENGG*3210 (Communication Systems)
- ENGG*6400 (Mobile Device Applications)

- Wireless Sensor Networks
- Network Protocols
- Network Programming
- Smart Cities and IoT

GRAHAM TAYLOR

PhD, U of Toronto, 2009

Courses

- ■ENGG 3130 (Modeling Complex Systems)
- ■ENGG*6500 (Machine Learning)
- UNIV*6080 (Computational Thinking for AI)

Research Interests

Machine Learning:

- Deep Learning and Representation Learning
- Learning from sequences (time series)
- Applications to computer vision
- Large-scale ML and hardware acceleration

JULIE VALE

PhD, U of Waterloo, 2010

Courses

- ENGG*2450 (Electrical Circuits)
- ENGG*4280 (Digital Process Control)
- ENGG*3410 (Systems and Control)
- ENGG*6060 (Systems Modelling)
- ENGG*6580 (Advanced Control)

- Engineering Education
- Control Theory

HADIS KARIMIPOUR

PhD, U of Alberta, 2015

Courses

- ENGG*3390 (Signal Processing)
- ENGG*3410 (Systems and Control)
- ENGG*6140 (Optimization Techniques)

- Control System Modeling and Analysis
- Machine Learning/Deep Learning
- Power Systems Monitoring and Analysis
- Smart Grid Modeling, Analysis and Security

SIMON YANG

Courses

- ENGG*3410 (Systems and Control Theory)
- ENGG*4430 (Neuro-Fuzzy/Soft Computing)
- ENGG*6570 (Advanced Soft Computing)
- ENGG*6580 (Advanced Control Systems)

PhD, U of Alberta, 1999

- Biological and Artificial Intelligent Systems
- Robotics and Automation
- Intelligent Control Systems

DESIGN COMPETITIONS

- ACM International Programming Contest
- Computer Society Int. Design Competition
- RoboCup
- RescueRobot
- Formula SAE Racing
- Robotics Team
- Autonomous Sailing
- Ont Eng. Competition: Programming Track

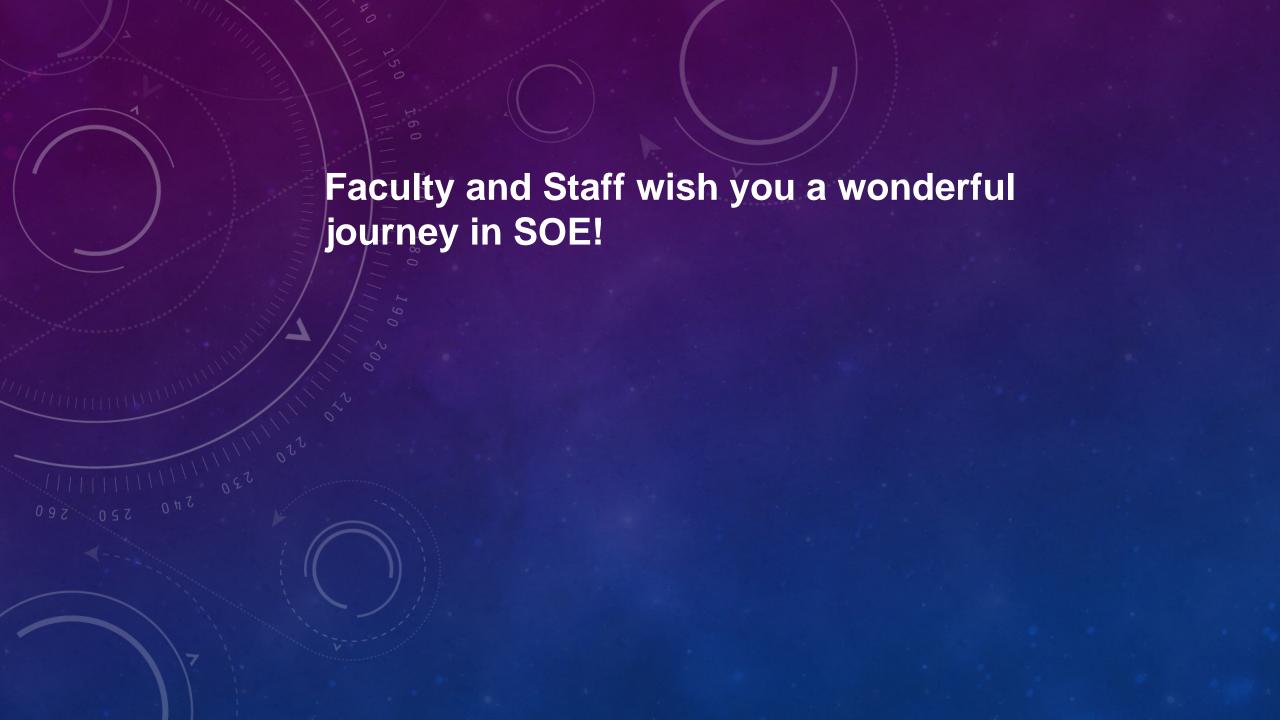

ROBOTICS TEAM

- At the beginning of each year, hosts an introductory sumo bot competition
- Team regularly competes in the Canadian International Rover Challenge (CIRC)
- Students also built an underwater robot

http://ugrt.ca

OEC: PROGRAMMING TRACK

- The 2014 Ontario Engineering Competition added a Programming category for the first time
- The SOE Team placed 2nd out of 5 teams – they were 2nd year students mainly competing against seniors
- They designed a HTML5-based mapping mobile app
- \$1,000 prize and new phones!



Clockwise from bottom left are Mark Nijjar, Paul Szaloky, Anthony Burkholder and Farhad Rahbarnia.

ENGINEERING @ GUELPH

Multi-disciplenary, flexible, personal

