ENGG*2400 Engineering Systems Analysis

School of Engineering, Fall 2012

(August 29, 2012)

Instructor:

Prof. Bob Dony Thorn 2341, ext. 53458 Email: rdony@uoguelph.ca Web site: CourseLink Office hours: Tue 14:00-16:00

Teaching Assistants:

Thomas Hummel	Han Zhao	Yifan Cai
Room VMI 126E		Room VMI 214A
Email: thummel@uoguelph.ca	Email: hzhao03@uoguelph.ca	Email: ycai@uoguelph.ca
Office hours: TBA	Office hours: TBA	Office hours: TBA
Ahmed Mahmood	Sean Fraser	
Room VMI 124	VMI 139	
Email: amahmood@uoguelph.ca	Email: frasers@uoguelph.ca	
Office hours: TBA	Office hours: TBA	

Prerequisites:

Prerequisites:ENGG*1210, ENGG*1500, MATH*1210Corequisite:MATH*2270NOTE: You may be removed from this course if you do not have the correct prerequisites.

Schedule:

Class times: MWF 08:30 to 09:20 (ALEX 200)

Tutorial times:

 Mon
 12:30 - 13:20
 MACK 235

 Mon
 16:30 - 17:20
 MACK 233

 Tue
 11:30 - 12:20
 MACK 233

 Wed
 11:30 - 12:20
 MACK 237

 Wed
 16:30 - 17:20
 MACK 227

 Fri
 16:30 - 17:20
 MACK 227

Course Description:

This course is concerned with the modeling and response analysis of common systems encountered in engineering such as mechanical, electrical, thermal, hydraulic, biological, and environmental systems. Applications of multivariate calculus, linear algebra, and differential equations are made to simulate and analyse such systems. Solution techniques covered include mathematical and computer-aided approaches.

Course Objective:

To provide the student with the analytical skills required to model engineering systems. Students will learn to identify the relevant elements that comprise a system, apply elemental laws and general theorems to derive mathematical models, and then solve the mathematical models using techniques taught in other courses as well as using computer software for system simulation.

Course Text:

Woods & Lawrence, Modeling and Simulation of Dynamic Systems, Prentice-Hall, 1997

Major Topics:

Static systems analysis. Introduction to dynamic systems. Hydraulic, electrical, thermal and mechanical system examples. Analytical solution techniques in time and transform domains. Simulations. Frequency response.

Evaluation:

In Class Quizzes:	Sept 21 Oct 3 Oct 26 Nov 2	In class	10% (best 4 of 5)
	Nov 23		200
Midterm Test:	wed. Oct. 17, 17:30-18:30	Room IBD	20%
	Wed. Nov. 14, 17:30-18:30	Room TBD	20%
Final Exam:	Thu. Dec. 13, 08:30-10:30	Room TBD	50%

Academic Misconduct:

Please familiarize yourself with your Academic Responsibilities, and the Regulations and Procedures as outlined in the Undergraduate Calendar. Another informative site is the tutorial on Academic Integrity. Please also note the section on Academic Misconduct in your Engineering Program Guide and the School of Engineering Code of Ethics

Tentative Schedule:

Week	Topics	Chapters
1-3	Hydraulic, electrical,	3,4,5,6
	thermal, mechanical	
2-4	Graphs, nodes & loops	n/a
5	Model forms	1,2
6	State space	G
7	Numerical solution	9,H
8	Review of diff. equ.	9,E
9-11	Laplace solution	F
12	Frequency response	8